William Schneider

William Schneider

Computational Catalysis & Environmental Chemistry

Biography

2004-present
Professor, Department of Chemical and Biomolecular Engineering, University of Notre Dame
2004-present
Concurrent Professor, Department of Chemistry and Biochemistry, University of Notre Dame
1991-2004
Ford Motor Company
1991
Ph.D., Ohio State University
1986
B.Sc., University of Michigan-Dearborn

Selected Awards

2011
Fellow, American Association for the Advancement of Science (AAAS)
2009
BP Foundation Outstanding Teacher Award for the College of Engineering, University of Notre Dame

Research Interests

Professor Schneider's group applies state-of-the-art first-principles molecular simulation tools, based primarily on density functional theory (DFT), to study a range of problems in heterogeneous surface reactivity and catalysis. These quantum-mecahnics-based calculations take advantage of some of the latest and most powerful computers available to produce accurate predictions of chemical structure, energetics, and reactivity for systems that were impossible to study even just a few years ago. Statistical thermodynamics and kinetics provide the links to macroscopic prediction. The simulations are coupled with simple but powerful concepts of chemical structure and bonding—key to both the effective use of the tools and extraction of useful physical insight. The group partners closely with experimentalists both to validate results and to provide an avenue for their rapid application.

Current research focuses on heterogeneous reactivity at metal and metal-oxide surfaces. This type of reactivity is common to many environmental processes and underpins many technologies used to mitigate or eliminate the impacts of society on the environment, especially activities related to the production and consumption of energy. Some examples include catalytic removal of emissions from combustion exhaust, catalytic conversion of petroleum fuels, solid-state gas sensing, and fuel cell catalysis. Understanding gained at the molecular level allows us to better control-and ultimately to tailor-chemical systems to perform functions more cleanly, efficiently, and durably. The research group is highly interdsciplinary, cutting across the traditional boundaries of chemical engineering, chemistry, physics, environmental science, materials science, and the emerging field of nanoscience.

Recent Papers

  • Barboun, P., Mehta, P., Herrera, F. A., Go, D. B., Schneider, W. F., Hicks, J. C. "Distinguishing Plasma Contributions to Catalyst Performance in Plasma-Assisted Ammonia Synthesis" 2019 ACS Sustainable Chemistry and Engineering, 7 (9), pp. 8621-8630. DOI:10.1021/acssuschemeng.9b00406.
  • Li, S., Gounder, R., Debellis, A., Müller, I. B., Prasad, S., Moini, A., Schneider, W. F. "Influence of the N, N, N-Trimethyl-1-adamantyl Ammonium Structure-Directing Agent on Al Substitution in SSZ-13 Zeolite" 2019 Journal of Physical Chemistry C, 123 (28), pp. 17454-17458. DOI:10.1021/acs.jpcc.9b05334.
  • Ma, H., Li, S., Wang, H., Schneider, W. F. "Water-Mediated Reduction of Aqueous N-Nitrosodimethylamine with Pd" 2019 Environmental Science and Technology, 53 (13), pp. 7551-7563. DOI:10.1021/acs.est.9b01425.
  • Matera, S., Schneider, W. F., Heyden, A., Savara, A. "Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis" 2019 ACS Catalysis, 9 (8), pp. 6624-6647. DOI:10.1021/acscatal.9b01234.
  • Mehta, P., Barboun, P., Go, D. B., Hicks, J. C., Schneider, W. F. "Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review" 2019 ACS Energy Letters, 4 (5), pp. 1115-1133. DOI:10.1021/acsenergylett.9b00263.
  • Shih, A. J., Khurana, I., Li, H., González, J., Kumar, A., Paolucci, C., Lardinois, T. M., Jones, C. B., Albarracin Caballero, J. D., Kamasamudram, K., Yezerets, A., Delgass, W. N., Miller, J. T., Villa, A. L., Schneider, W. F., Gounder, R., Ribeiro, F. H. "Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction" 2019 Applied Catalysis A: General, 574 pp. 122-131. DOI:10.1016/j.apcata.2019.01.024.

Contact Information

Primary Research Areas

Research Specialties