Olaf Wiest

Olaf Wiest

Organic & Bioorganic reaction mechanisms


Professor, University of Notre Dame
Associate Professor, University of Notre Dame
Assistant Professor, University of Notre Dame
Postdoctoral Fellow, University of California, Los Angeles
Dr. rer. nat. University of Bonn, Germany
Diplom, University of Bonn, Germany

Selected Awards

Fellow of the American Association for the Advancement of Science
John Kaneb Award for undergraduate teaching
Camille Dreyfus Teacher-Scholar Award
NIH First Award

Research Interests

The central topic of the research in the Wiest group is how molecules interact and react. The structure and energetics of non-covalent complexes and transition states is probed theoretically and experimentally. The detailed understanding of intermolecular interactions can then be exploited for the design of assays for biophysical studies and for drug design. Four distinct areas of research are currently under investigation: (1) development of epigenetic modulators targeting histone deacetylases and bromodomains as chemical tools and drug leads, (2) rare and neglected diseases, specifically Niemann Pick Type C disease, (3) mechanistic studies of transition metal and enzyme catalyzed reactions, and (4) development of Q2MM methods for the virtual screening of chiral ligands for asymmetric catalysis. 

The research in the Wiest group uses a wide range of experimental and computational methods that are applied to fundamental and applied problems in organic and biophysical chemistry. In this work, we collaborate with a number of other researchers in synthetic chemistry, biology, physics, and at medical schools at Notre Dame and around the world.

Recent Papers

  • Huang, X.; Quinn, T. R.; Harms, K.; Webster, R. D.; Zhang, L.; Wiest, O.; Meggers, E. "Direct Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions." J. Am. Chem. Soc. 2017, 139, 9120-9123.
  • Tutkowski, B.; Meggers, E.; Wiest, O. "Understanding Rate Acceleration and Stereoinduction of an Asymmetric Giese Reaction Mediated by a Chiral Rhodium Catalyst." J. Am. Chem. Soc. 2017, 139, 8062-8065.
  • Brooks, J. L.; Xu, L.; Wiest, O.; Tan, D. S. "Diastereoselective Synthesis of Highly Substituted Tetrahydrofurans by Pd-Catalyzed Tandem Oxidative Cyclization Redox Relay Reactions Controlled by Intramolecular Hydrogen Bonding." J. Org. Chem. 2017, 82, 57-75.
  • Zhang, C.; Tutkowski, B.; DeLuca, R. J.; Joyce, L. A.; Wiest, O.; Sigman, M. S. "Palladium-catalyzed enantioselective Heck alkenylation of trisubstituted allylic alkenols: a redox-relay strategy to construct vicinal stereocenters." Chem. Sci. 2017, 8, 2277-2282.
  • Hideshima, T.; Qi, J.; Paranal, R. M.; Tang, W.; Greenberg, E.; West, N.; Colling, M. E.; Estiu, G.; Mazitschek, R.; Perry, J. A.; Ohguchi, H.; Cottini, F.; Mimura, N.; Goerguen, G.; Tai, Y.; Richardson, P. G.; Carrasco, R. D.; Wiest, O.; Schreiber, S. L.; Anderson, K. C.; Bradner, J. E. "Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma." P. Natl. Acad. Sci. USA 2016, 113, 13162-13167.
  • Xu, W.; Arieno, M.; Loew, H.; Huang, K.; Xie, X.; Cruchter, T.; Ma, Q.; Xi, J.; Huang, B.; Wiest, O.; Gong, L.; Meggers, E. "Metal-Templated Design: Enantioselective Hydrogen-Bond-Driven Catalysis Requiring Only Parts-per-Million Catalyst Loading." J. Am. Chem. Soc. 2016, 138, 8774-8780.

Contact Information

Primary Research Areas

Research Specialties