
Brandon Ashfeld
Synthetic Organic Chemistry Transition Metal Catalysis in Synthetic Methods Development
Biography
- 2014-present
- Associate Professor, University of Notre Dame
- 2016-present
- Director of Graduate Studies, University of Notre Dame
- 2007-2014
- Assistant Professor, University of Notre Dame
- 2004-2007
- Ruth L. Kirschstein NIH Postdoctoral Fellow, Stanford University
- 2004
- Ph.D. in Chemistry, University of Texas at Austin
- 1998
- B.S. in Chemistry, University of Minnesota-Twin Cities
Selected Awards
- 2015
- Rev. Edmund P. Joyce, C.S.C. Award for Excellence in Undergraduate Teaching
- 2011
- NSF CAREER Award
- 2009
- University of Notre Dame Faculty Scholarship Award
Research Interests
Our research program is focused on the development of new methods to enable unconventional bond formations in the synthesis of complex natural products and designed materials. Our main objective is to use new chemical constructs to design and synthesize improved chemotherapies for brain and CNS cancers, and materials that will ultimately lead to the reduction of atmospheric concentrations of anthropogenic CO2.
Designing Brain and CNS Cancer Chemotherapeutics.
We seek to addresses the issue of suitable brain and CNS drug treatment options by focusing on natural products with promising cytotoxicity that also display blood brain barrier (BBB) transcytosis properties. Specifically, the families of diarylheptanoids and glycosidic marine toxin natural products have captured our attention due to the potent anticancer activity exhibited by multiple members of each class. We are currently working toward the development of two new synthetic methods that will enable the efficient, and scalable construction of these natural products for the development of new CNS cancer chemotherapeutics. The first approach is based on the conceptual design of a tandem reaction sequence composed of mechanistically distinct transformations facilitated by a single catalyst to rapidly assemble all alkyl-substituted tertiary carbons centers. By exploiting aldehydes as traceless dielectrophilic entities, in conjunction with the bifunctional attributes of titanocene, we can construct multiple C–C and C–X bonds in a highly convergent fragment coupling. Our second area of methods development focuses on the formation of Csp2–N and Csp2–C bonds, which constitutes one of the most vibrant areas of research in synthetic organic chemistry today. Unfortunately, conventional multistep protocols involving organometallic reagents and transition metal complexes can complicate complex molecule synthesis. Our program is working toward providing a solution to this long-standing problem in organic synthesis through the development phosphorus-mediated C–C and C–N bond formations that ultimately circumvents the need for traditional organometallic or transition metal-based reagents.
Innovating the Chemistry of Covalent Carbon Capture.
Managing the impact of human activities on the concentration of CO2 in the atmosphere is the most far-reaching environmental challenge facing the world today. Carbon capture and separation is an integral part of our energy future, independent of its application to todayâs coal-fired power plants. Our research program is working toward the development of a strategy to control atmospheric, anthropogenic CO2 concentrations through the design of energy efficient carbon capture and sequestration materials. Our ultimate goal is the development of a regenerative material that will undergo selective super-stoichiometric carbon capture with near-zero parasitic energy consumption. Recognizing that C–C and C–X chemical bonds are convenient media for energy storage, transport, and consumption, our efforts rely on the design and synthesis of functionalized N-heterocyclic anions and carbenes for energy efficient gas phase removal of CO2.
Recent Papers
- Bacher, E. P., Ashfeld, B. L. "Transition metal-free strategies for the stereoselective construction of spirocyclopropyl oxindoles" 2020 Tetrahedron, 76 (4), 130692. DOI:10.1016/j.tet.2019.130692.
- Eckert, K. E., Lepore, A. J., Ashfeld, B. L. "A Phosphorus(III)-Mediated (4+1)-Cycloaddition of 1,2-Dicarbonyls and Aza-o-Quinone Methides to Access 2,3-Dihydroindoles" 2019 Helvetica Chimica Acta, 102 (12), e1900192. DOI:10.1002/hlca.201900192.
- Bacher, E. P., Lepore, A. J., Pena-Romero, D., Smith, B. D., Ashfeld, B. L. "Nucleophilic addition of phosphorus(iii) derivatives to squaraines: Colorimetric detection of transition metal-mediated or thermal reversion" 2019 Chemical Communications, 55 (22), pp. 3286-3289. DOI:10.1039/c9cc01243e.
- Rodriguez, K. X., Howe, E. N., Bacher, E. P., Burnette, M., Meloche, J. L., Meisel, J., Schnepp, P., Tan, X., Chang, M., Zartman, J., Zhang, S., Ashfeld, B. L. "Combined Scaffold Evaluation and Systems-Level Transcriptome-Based Analysis for Accelerated Lead Optimization Reveals Ribosomal Targeting Spirooxindole Cyclopropanes" 2019 ChemMedChem. DOI:10.1002/cmdc.201900266.
- Eckert, K. E., Ashfeld, B. L. "Aroyl Isocyanates as 1,4-Dipoles in a Formal [4 + 1]-Cycloaddition Approach toward Oxazolone Construction" 2018 Organic Letters, 20 (8), pp. 2315-2319. DOI:10.1021/acs.orglett.8b00656.
- Rodriguez, K. X., Pilato, T. C., Ashfeld, B. L. "An unusual stereoretentive 1,3-quaternary carbon shift resulting in an enantioselective RhII-catalyzed formal [4+1]-cycloaddition between diazo compounds and vinyl ketenes" 2018 Chemical Science, 9 (12), pp. 3221-3226. DOI:10.1039/c8sc00020d.
Gallery
Contact Information
- Associate Professor
- Office: 305D McCourtney Hall
- Phone: 574-631-1727
- Send an email
- Visit Website