Francis Castellino

Kleiderer-Pezold Professor of Biochemistry; Director, WM Keck Center for Transgene Research

230E Raclin-Carmichael Hall
Notre Dame, IN 46556
+1 574-631-8996


Research Areas

  • Biochemistry

Research Specialties

  • Life Processes
  • Medicine

Prospective Graduate Students

Request More Information


Year Title
2006-present Adjunct Professor of Biochemistry & Molecular Biology, Indiana University School of Medicine
1996-present Director, WM Keck Center for Transgene Research, University of Notre Dame
1983-present Kleiderer/Pezold Professor of Biochemistry, University of Notre Dame
1979-2002 Dean, College of Science, University of Notre Dame
1977-1983 Professor, University of Notre Dame
1974-1977 Associate Professor, University of Notre Dame
1970-1974 Assistant Professor, University of Notre Dame
1968-1970 NIH Postdoctoral Fellow, Duke University
1968 Ph.D. in Biochemistry, University of Iowa
1964 B.S. University of Scranton

Selected Awards

2020   ISTH Esteemed Career Award

2014   University of Iowa Carver College of Medicine Distinguished Alumnus Award

2008   Wyeth-ISPF Research Prize

2006   Fellow of the Reilly Center for Science, Technology, and Values

2003   Annual Faculty Award, University of Notre Dame

2001   Elected Fellow of the American Heart Association and the Council on Arteriosclerosis, Thrombosis, and Vascular Biology

1998   Fellow, American Association for the Advancement of Science

Research Interests

The interests of Professor Castellino's laboratory involve the structure, function and activation of proteins that participate in blood coagulation and blood clot dissolution. The in vivo mechanisms of the roles of these proteins in these processes are being addressed through in vivo targeted gene-replacement approaches and corresponding in vitro structure-function studies on these genes and proteins are being studied by the most modern biophysical techniques, e.g., X-ray crystallography, NMR, etc. Most of these proteins exist in an inactive state in plasma and thus must be activated to enzymes to exhibit their functional properties. The molecular events involved in the activation and analysis of the concomitant structural changes that occur in the protein are investigated by modern biochemical techniques. Major tools of the laboratory involve cloning, mutagenesis and expression of variant recombinant proteins and individual protein domains, immunochemical studies of the proteins, as well as physical and chemical analysis of their solution structures. The properties of the proteins are then related to their functions. Another project receiving attention involves the structure-function relationships of small gamma-carboxyglutamic acid (Gla)-containing peptides from marine cone snails that target the brain NMDA receptor. These peptides inhibit the flow of calcium into neuronal cells, this latter event being responsible for the neuropathology associated with stroke, epilepsy, Alzheimer's Disease, ALS, etc. The biochemical, pharmacological and neurobiological mechanisms of the actions of these peptides are under study. Peptide synthesis, receptor binding, molecular biological and electrophysiological tools are currently employed in this work. To determine the biological functions of genes encoding coagulation and clot-dissolving proteins in hemostasis, cancer, inflammation, wound healing, embryonic implantation and development, metastases, and athersclerosis, gene deletion and other gene targeting experiments are being performed in mice, in conjunction with phenotyping of these animals. Such studies are expected to provide important information on the development and progression of these disease states.

Selected Publications

  • Molina, J. J.; Kohler, K. N.; Gager, C.; Andersen, M. J.; Wongso, E.; Lucas, E. R.; Paik, A.; Xu, W.; Donahue, D. L.; Bergeron, K.; Klim, A.; Caparon, M. G.; Hultgren, S. J.; Desai, A.; Ploplis, V. A.; Flick, M. J.; Castellino, F. J. and Flores-Mireles, A. L. "Fibrinolytic-Deficiencies Predispose Hosts to Septicemia from a Catheter-Associated UTI" 2024 Nature Communications, 15 (1), 2704. DOI: 10.1038/s41467-024-46974-6.
  • Olesk, J.; Donahue, D.; Ross, J.; Sheehan, C.; Bennett, Z.; Armknecht, K.; Kudary, C.; Hopf, J.; Ploplis, V. A.; Castellino, F. J.; Lee, S. W. and Nallathamby, P. D. "Antimicrobial Peptide-Conjugated Phage-Mimicking Nanoparticles Exhibit Potent Bactericidal Action Against Streptococcus Pyogenes in Murine Wound Infection Models" 2024 Nanoscale Advances, 6 (4), pp.1145-1162. DOI: 10.1039/d3na00620d.
  • Li, Z.; Li, W. X.; Lu, J. L.; Liu, Z. Q.; Lin, X. M.; Liu, Y. L. and Castellino, F. J. "Quantitative Proteomics Analysis Reveals the Effect of a MarR Family Transcriptional Regulator AHA_2124 on Aeromonas Hydrophila" 2023 Biology-Basel, 12 (12), 1473. DOI: 10.3390/biology12121473.
  • Ranasinghe, A.; Holohan, M.; Borger, K. M.; Donahue, D. L.; Kuc, R. D.; Gerig, M.; Kim, A.; Ploplis, V. A.; Castellino, F. J. and Schwarz, M. A. "Altered Smooth Muscle Cell Histone Acetylome by the SPHK2/S1P Axis Promotes Pulmonary Hypertension" 2023 Circulation Research, 133 (8), pp.704-719. DOI: 10.1161/CIRCRESAHA.123.322740.
  •  Ayinuola, Y. A.; Donahue, D. L.; Charles, J.; Liang, Z.; Castellino, F. J. and Ploplis, V. A. "Generation and Characterization of a Plasminogen-Binding Group A Streptococcal M-Protein/Streptokinase-Sensitive Mouse Line" 2023 Journal of Thrombosis and Haemostasis, 21 (6), pp.1630-1635. DOI: 10.1016/j.jtha.2023.02.028.
  • Ayinuola, Y. A. and Castellino, F. J. "Inactivation of the Lysine Binding Sites of Human Plasminogen (hPg) Reveals Novel Structural Requirements for the Tight hPg Conformation, M-Protein Binding, and Rapid Activation" 2023 Frontiers in Molecular Biosciences, 10 DOI: 10.3389/fmolb.2023.1166155.Bao, Y. J.; Zhou, Q.; Yu, X. J.; Yu, X. L. and Castellino, F. J. "Analysis and Characterization of Glutathione Peroxidases in an Environmental Microbiome and Isolated Bacterial Microorganisms" 2023 Journal of Microbiology and Biotechnology, 33 (3), pp.299-309. DOI: 10.4014/jmb.2209.09006.