John Parkhill

John Parkhill

Quantum Chemistry


Assistant Professor, University of Notre Dame
Postdoctoral Fellow, Harvard University
Ph.D. in Theoretical Chemistry, University of California, Berkeley
B.S. in Chemistry, B.S. in Mathematics, University of Chicago

Selected Awards

Norman H. Nachtrieb Award, University of Chicago
Pfizer Undergraduate Research Fellow

Research Interests

Within a little more than 50 years, our ability to calculate properties of molecular systems using only the fundamental physics governing them has grown from computational art into a often predictive tool. Molecular geometries and the thermodynamics of chemical reactions can be accurately computed using electronic structure. Beyond static properties many of the approximations which make ground state electronic structure robust no longer hold. Errors in excited state energies are on the same order of magnitude as the energies themselves and correlate poorly with the realities of experiments. Trajectories of electronic dynamics: the motions of electrons and ions in batteries and photovoltaics, are currently too expensive to compute for most timescales of interest. The goal of my group is to provide physical models and computational tools to make modeling electronic dynamics more routine and predictive. This involves running simulations of energy materials, recognizing the shortcomings of those simulations, doing the pencil & paper physics to improve the model and realizing that model in computer code.

Recent Papers

  • Yao, K.; Herr, J. E.; Brown, S. N.; Parkhill, J. "Intrinsic Bond Energies from a Bonds-in-Molecules Neural Network." J. Phys. Chem. Lett. 2017, 8, 2689-2694.
  • Yao, K.; Herr, J. E.; Parkhill, J. "The many-body expansion combined with neural networks." J. Chem. Phys. 2017, 146, 014106.
  • Wang, H.; Yao, K.; Parkhill, J. A.; Schultz, Z. D. "Detection of electron tunneling across plasmonic nanoparticle-film junctions using nitrile vibrations." Phys. Chem. Chem. Phys. 2017, 19, 5786-5796.
  • Lehtola, S.; Parkhill, J.; Head-Gordon, M. "Cost-effective description of strong correlation: Efficient implementations of the perfect quadruples and perfect hextuples models." J. Chem. Phys. 2016, 145, 134110.
  • Nguyen, T. S.; Parkhill, J. "Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite." J. Phys. Chem. A 2016, 120, 6880-6887.
  • Markovich, T.; Blau, S. M.; Parkhill, J.; Kreisbeck, C.; Sanders, J. N.; Andrade, X.; Aspuru-Guzik, A. "Accelerating the computation of bath spectral densities with super-resolution." Theor. Chem. Acc. 2016, 135, 215.

Contact Information

Primary Research Areas

Research Specialties