Anthony S. Serianni

Anthony S. Serianni

Biomolecular Structure and NMR Spectroscopy


Professor, University of Notre Dame
Associate Professor, University of Notre Dame
Assistant Professor, University of Notre Dame
Postdoctoral Research Associate, Cornell University
Ph.D. in Biochemistry, Michigan State University
B.S. in Biochemistry, Albright College

Selected Awards

Elected Fellow, Royal Society of Chemistry
Elected Fellow, American Chemical Society
Elected Fellow, American Association for the Advancement of Science
Melville L. Wolfrom Award in Carbohydrate Chemistry, ACS Division of Carbohydrate Chemistry
Kaneb Teaching Award
John A. Boezi Memorial Alumnus Award, Michigan State University

Research Interests

Professor Serianni's research focuses on the use of stable isotopically-labeled compounds to examine structure, conformation and reactivity of carbohydrates and nucleic acids in solution using modern multidimensional NMR methods and computational techniques. His group is interested in developing and improving chemical and chemi-enzymic methods to prepare carbohydrate-containing biomolecules containing one or more sites of isotopic enrichment, with 13C, 2H and 15N of primary concern. NMR studies of these labeled biomolecules permit a more detailed assessment of their 3-D structures in solution, information which is critical to understanding the fundamental factors controlling molecular recognition in biological processes.

Of current interest is the use of stable isotopes in the assessment of DNA and RNA structure in solution. Research is under way to: a) develop efficient chemical, chemi-enzymic, and/or biological methods to introduce isotopes selectively or uniformly into nucleosides and oligonucleotides, b) apply 2-D and 3-D NMR methods to decipher the NMR spectra of labeled oligonucleotides, and c) assess the merits of 13C-1H and 13C-13C spin-coupling constants within the furanose rings of RNA and DNA as structural probes. NMR data are complemented and extended by ab initio molecular orbital calculations which can assess the energetics and structural features of furanose ring pseudorotation and predict 13C-1H and 13C-13C spin-couplings for various pathways in these rings, and by X-ray crystallography. The long range objective is to apply this information to NMR solution studies of CCAAT-containing oligonucleotides involved in the NF-1 recognition site at the origin of replication of human adenovirus, and other biologically-important DNA and RNA oligomers.

Other work involves studies of carbohydrate metabolism via in vivo 13C and 19F NMR spectroscopy, and the development of automated devices for chemical and biological synthesis of labeled biomolecules.

Recent Papers

  • Chetyrkin SV, Zhang W, Hudson BG, Serianni AS, Voziyan PA. Pyridoxamine protects proteins from functional damage by 3-deoxyglucosone: mechanism of action of pyridoxamine. Biochemistry 2008 Jan 22;47(3):997-1006
  • Bose-Basu B, Klepach T, Bondo G, Bondo PB, Zhang W, Carmichael I, Serianni AS. 13C-13C NMR spin-spin coupling constants in saccharides: structural correlations involving all carbons in aldohexopyranosyl rings. J Org Chem. 2007 Sep 28;72(20):7511-22.
  • Wu Q, Pan Q, Zhao S, Imker H, Serianni AS. A disaccharide rearrangement catalyzed by molybdate anion in aqueous solution. J Org Chem. 2007 Apr 13;72(8):3081-4.
  • Zhao H, Pan Q, Zhang W, Carmichael I, Serianni AS. DFT and NMR studies of 2JCOH, 3JHCOH, and 3JCCOH spin-couplings in saccharides: C-O torsional bias and H-bonding in aqueous solution. J Org Chem. 2007 Sep 14;72(19):7071-82.
  • Maiti NC, Zhu Y, Carmichael I, Serianni AS, Anderson VE. 1JCH correlates with alcohol hydrogen bond strength. J Org Chem. 2006 Mar 31;71(7):2878-80.

Contact Information

Primary Research Areas

Research Specialties