John Conboy (University of Utah)


Location: 184 Nieuwland Science Hall

"Eukaryotic Membrane Lipid Asymmetry: What a New Analytical Technique Can Tell Us About an Old Problem"

A membrane, only two molecules thick, surrounds all cells and is responsible for controlling the passage of materials in and out of the cell in a selective manner. Our current understanding of the structure and dynamics of cellular membranes emerged in the early 1970’s.  However, there is still much we do not know about this seemingly simple “shell” which makes life as we know it possible. A central issue in molecular biology is the movement of lipids across the cellular membrane. The translocation of lipids is involved in cell apoptosis, the viral infection of living cells, the functioning of antibiotics, antiseptics and drugs, and the regulation and growth of cells. There have been a number of studies attempting to find the putative proteins responsive for lipid transbilayer movement in eukaryotic cells. This has led to a large number of theories about the mechanism of transbilayer movement of lipids in cellular systems and the physical process by which lipid compositional asymmetry in the plasma membrane of eukaryotic cells is maintained. Using methods of classical surface chemistry coupled with nonlinear optical methods, we have developed a novel analytical approach, using sum-frequency vibrational spectroscopy (SFVS), to selectively probe lipid compositional asymmetry in a planar supported lipid bilayer. This new method allows for the detection of lipid flip-flop kinetics and compositional asymmetry without the need for a fluorescent or spin-labeled lipid species by exploiting the coherent nature of SFVS.